Zur Seitenansicht


Flower scent of Ceropegia stenantha : electrophysiological activity and synthesis of novel components
VerfasserHeiduk, Annemarie ; Haenni, Jean-Paul ; Meve, Ulrich ; Schulz, Stefan ; Dötterl, Stefan
Erschienen in
Journal of Comparative Physiology A, Berlin, 2019, Jg. 2019, S. 1-10
ErschienenBerlin : Springer Berlin Heidelberg, 2019
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)Flower scent / Electrophysiology / Scatopsidae / 3-Acetyloxy-4-phenylbutan-2-one / 3-Acetyloxy-1-phenylbutan-2-one
URNurn:nbn:at:at-ubs:3-11746 Persistent Identifier (URN)
 Das Werk ist frei verfügbar
Flower scent of Ceropegia stenantha [1.66 mb]
Zusammenfassung (Englisch)

In specialized pollination systems, floral scents are crucial for flowerpollinator communication, but key volatiles that attract pollinators are unknown for most systems. Deceptive Ceropegia trap flowers are famous for their elaborate mechanisms to trap flies. Recent studies revealed species-specific floral chemistry suggesting highly specialized mimicry strategies. However, volatiles involved in fly attraction were until now identified in C. dolichophylla and C. sandersonii, only. We here present data on C. stenantha for which flower scent and pollinators were recently described, but volatiles involved in flowerfly communication stayed unknown. We performed electrophysiological measurements with scatopsid fly pollinators (Coboldia fuscipes) and identified 12 out of 13 biologically active floral components. Among these volatiles some were never described from any organism but C. stenantha. We synthesized these components, tested them on antennae of male and female flies, and confirmed their biological activity. Overall, our data show that half of the volatiles emitted from C. stenantha flowers are perceived by male and female fly pollinators and are potentially important for flowerfly communication in this pollination system. Further studies are needed to clarify the role of the electrophysiologically active components in the life of scatopsid fly pollinators, and to fully understand the pollination strategy of C. stenantha.

Das PDF-Dokument wurde 2 mal heruntergeladen.
CC-BY-Lizenz (4.0)Creative Commons Namensnennung 4.0 International Lizenz