Go to page
 

Bibliographic Metadata

Title
A New Family of Capsule Polymerases Generates Teichoic Acid-Like Capsule Polymers in Gram-Negative Pathogens
AuthorLitschko, Christa ; Oldrini, Davide ; Budde, Insa ; Berger, Monika ; Meens, Jochen ; Gerardy-Schahn, Rita ; Berti, Francesco ; Schubert, Mario ; Fiebig, Timm
Published in
mBio, Washington, DC, 2018, Vol. 9, page 1-22
PublishedWashington, DC : American Society for Microbiology, 2018
LanguageEnglish
Document typeJournal Article
Keywords (EN)TagF / capsular polysaccharide / capsule / enzymatic synthesis / nuclear magnetic resonance / polymerases / polymers / teichoic acids / vaccines / veterinary vaccine development / Actinobacillus pleuropneumoniae / Haemophilus influenzae
ISSN2150-7511
URNurn:nbn:at:at-ubs:3-10531 Persistent Identifier (URN)
DOI10.1128/mBio.00641-18 
Restriction-Information
 The work is publicly available
Files
A New Family of Capsule Polymerases Generates Teichoic Acid-Like Capsule Polymers in Gram-Negative Pathogens [3.59 mb]
Links
Reference
Classification
Abstract (English)

Group 2 capsule polymers represent crucial virulence factors of Gram-negative pathogenic bacteria. They are synthesized by enzymes called capsule polymerases. In this report, we describe a new family of polymerases that combine glycosyltransferase and hexose- and polyol-phosphate transferase activity to generate complex poly(oligosaccharide phosphate) and poly(glycosylpolyol phosphate) polymers, the latter of which display similarity to wall teichoic acid (WTA), a cell wall component of Gram-positive bacteria. Using modeling and multiple-sequence alignment, we showed homology between the predicted polymerase domains and WTA type I biosynthesis enzymes, creating a link between Gram-negative and Gram-positive cell wall biosynthesis processes. The polymerases of the new family are highly abundant and found in a variety of capsule-expressing pathogens such as Neisseria meningitidis, Actinobacillus pleuropneumoniae, Haemophilus influenzae, Bibersteinia trehalosi, and Escherichia coli with both human and animal hosts. Five representative candidates were purified, their activities were confirmed using nuclear magnetic resonance (NMR) spectroscopy, and their predicted folds were validated by site-directed mutagenesis.

Stats
The PDF-Document has been downloaded 5 times.
License
CC-BY-License (4.0)Creative Commons Attribution 4.0 International License