Zur Seitenansicht


3D Printing of Hierarchical Porous Silica and -Quartz
VerfasserPutz, Florian ; Scherer, Sebastian ; Ober, Michael ; Morak, Roland ; Paris, Oskar ; Hüsing, Nicola
Erschienen in
Advanced Materials Technologies, Hoboken, 2018, Jg. 2018, H. 1800060, S. 1-5
ErschienenHoboken : Wiley, 2018
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)3D printing / crystallization / hierarchical porous silica / solgel inks / quartz
URNurn:nbn:at:at-ubs:3-10527 Persistent Identifier (URN)
 Das Werk ist frei verfügbar
3D Printing of Hierarchical Porous Silica and -Quartz [1.24 mb]
Zusammenfassung (Englisch)

The ability to macroscopically shape highly porous oxide materials while concomitantly tailoring the porous network structure as desired by simple and environmentally friendly processes is of great importance in many fields. Here, a purely aqueous printing process toward deliberately shaped, hierarchically organized amorphous silica and the corresponding polycrystalline quartz analogues based on a direct ink writing process (DIW) is presented. The key to success is the careful development of the solgel ink, which is based on an acidic aqueous sol of a glycolated silane and structuredirecting agents. The resulting 3D (DIW) printed silica consists of a macroporous network of struts comprising hexagonally arranged mesopores on a 2D hexagonal lattice. Together with a printed porous superstructure on the millimeter scale, welldefined pore sizes and shapes on at least three hierarchy levels can thus be fabricated. The introduction of devitrifying agents in the printed green part and subsequent heat treatment allows for the transformation of the silica structure into polycrystalline quartz. While small pores (micro and mesopores below 10 nm) are lost, the printed morphology and the macroporous network of struts is preserved during crystallization.

Das PDF-Dokument wurde 6 mal heruntergeladen.
CC-BY-Lizenz (4.0)Creative Commons Namensnennung 4.0 International Lizenz