Go to page
 

Bibliographic Metadata

Title
The vibrational and configurational entropy of disordering in Cu3Au
AuthorBenisek, Artur ; Dachs, Edgar
Published in
The vibrational and configurational entropy of disordering in Cu3Au, Amsterdam, 2015, Vol. 632, Issue 0, page 585-590
PublishedElsevier, 2015
LanguageEnglish
Document typeJournal Article
Keywords (EN)Gold / Copper / Alloy / Vibrational entropy / Configurational entropy / Enthalpy
Project-/ReportnumberP23056-N21
ISSN1873-4669
URNurn:nbn:at:at-ubs:3-6738 Persistent Identifier (URN)
DOI10.1016/j.jallcom.2014.12.215 
Restriction-Information
 The work is publicly available
Files
The vibrational and configurational entropy of disordering in Cu3Au [0.72 mb]
Links
Reference
Classification
Abstract (English)

The thermodynamics of disordering in Cu3Au have been investigated by measuring the heat capacity of samples with different degrees of long- and short-range order between T = 5 and 720 K using relaxation and differential scanning calorimetry. The heat capacities of L12-ordered and fcc-disordered samples show similar behaviour at low temperatures (<300 K). They deviate positively from the linear combination of the end-member heat capacities between 30 and 160 K. However, small differences between the two samples exist, as the disordered sample has a larger heat capacity producing a vibrational entropy of disordering of 0.05 R. At temperatures higher than 300 K, the heat capacity of the ordered sample shows a prominent lambda-type anomaly at 675 K due to the diffusive L12fcc phase transition. When starting these measurements with disordered samples, ordering effects are observed between 400 and 620 K, and the disordering reaction is observed at 660 K. Evaluation of the data gives an enthalpy and entropy of disordering at 683 K of 2.0 kJ mol1 and 0.39 R, respectively. However, these values increase with increasing temperature, thereby reducing the short-range order. Because the vibrational and configurational disordering effects become active at different temperature regimes, i.e., the vibrational effects at low temperatures (T 300 K) and the sum of both effects at higher temperatures (T > 300 K), they have been successfully separated.

Stats
The PDF-Document has been downloaded 18 times.
License
CC-BY-License (4.0)Creative Commons Attribution 4.0 International License