Go to page

Bibliographic Metadata

Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels
AuthorCsillik, Ovidiu
Published in
Remote Sensing, Basel, 2017, Vol. 9, Issue 3, page 1-19
PublishedMDPI, 2017
Document typeJournal Article
Keywords (EN)oversegmentation / runtime / OBIA / computer vision / pixels / superpixels / random forest
URNurn:nbn:at:at-ubs:3-5715 Persistent Identifier (URN)
 The work is publicly available
Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels [31.66 mb]
Abstract (English)

Speed and accuracy are important factors when dealing with time-constraint events for disaster, risk, and crisis-management support. Object-based image analysis can be a time consuming task in extracting information from large images because most of the segmentation algorithms use the pixel-grid for the initial object representation. It would be more natural and efficient to work with perceptually meaningful entities that are derived from pixels using a low-level grouping process (superpixels). Firstly, we tested a new workflow for image segmentation of remote sensing data, starting the multiresolution segmentation (MRS, using ESP2 tool) from the superpixel level and aiming at reducing the amount of time needed to automatically partition relatively large datasets of very high resolution remote sensing data. Secondly, we examined whether a Random Forest classification based on an oversegmentation produced by a Simple Linear Iterative Clustering (SLIC) superpixel algorithm performs similarly with reference to a traditional object-based classification regarding accuracy. Tests were applied on QuickBird and WorldView-2 data with different extents, scene content complexities, and number of bands to assess how the computational time and classification accuracy are affected by these factors. The proposed segmentation approach is compared with the traditional one, starting the MRS from the pixel level, regarding geometric accuracy of the objects and the computational time. The computational time was reduced in all cases, the biggest improvement being from 5 h 35 min to 13 min, for a WorldView-2 scene with eight bands and an extent of 12.2 million pixels, while the geometric accuracy is kept similar or slightly better. SLIC superpixel-based classification had similar or better overall accuracy values when compared to MRS-based classification, but the results were obtained in a fast manner and avoiding the parameterization of the MRS. These two approaches have the potential to enhance the automation of big remote sensing data analysis and processing, especially when time is an important constraint.

The PDF-Document has been downloaded 16 times.
CC-BY-License (4.0)Creative Commons Attribution 4.0 International License