Zur Seitenansicht
 

Titelaufnahme

Titel
A visual analytics approach for extracting spatio-temporal urban mobility information from mobile network traffic
VerfasserSagl, Günther ; Loidl, Martin ; Beinat, Euro
Erschienen in
ISPRS International Journal of Geo-Information, Basel, 2012, Jg. 1, H. 3, S. 256-271
ErschienenMDPI, 2012
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)visual analytics / urban dynamics / urban mobility / social sensing / big data / collective human behavior / spatio-temporal patterns / geographic information science
ISSN2220-9964
URNurn:nbn:at:at-ubs:3-5237 Persistent Identifier (URN)
DOI10.3390/ijgi1030256 
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
A visual analytics approach for extracting spatio-temporal urban mobility information from mobile network traffic [3.58 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Englisch)

In this paper we present a visual analytics approach for deriving spatio-temporal patterns of collective human mobility from a vast mobile network traffic data set. More than 88 million movements between pairs of radio cellsso-called handoversserved as a proxy for more than two months of mobility within four urban test areas in Northern Italy. In contrast to previous work, our approach relies entirely on visualization and mapping techniques, implemented in several software applications. We purposefully avoid statistical or probabilistic modeling and, nonetheless, reveal characteristic and exceptional mobility patterns. The results show, for example, surprising similarities and symmetries amongst the total mobility and people flows between the test areas. Moreover, the exceptional patterns detected can be associated to real-world events such as soccer matches. We conclude that the visual analytics approach presented can shed new light on large-scale collective urban mobility behavior and thus helps to better understand the “pulse” of dynamic urban systems.