Zur Seitenansicht
 

Titelaufnahme

Titel
Moments of volumes of lower-dimensional random simplices are not monotone
VerfasserReichenwallner, Benjamin
Erschienen in
Monatshefte für Mathematik, Wien, 2017, Jg. 2017, S. 1-17
ErschienenSpringer Vienna, 2017
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)Random polytopes / Random simplices / Approximation of convex bodies / Sylvesters problem / Monotonicity under inclusion
ISSN1436-5081
URNurn:nbn:at:at-ubs:3-4939 Persistent Identifier (URN)
DOI10.1007/s00605-017-1077-3 
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Moments of volumes of lower-dimensional random simplices are not monotone [0.5 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Englisch)

In a d-dimensional convex body K, for nd+1, random points X0,,Xn1 are chosen according to the uniform distribution in K. Their convex hull is a random (n1)-simplex with probability 1. We denote its (n1)-dimensional volume by VK[n]. The k-th moment of the (n1)-dimensional volume of a random (n1)-simplex is monotone under set inclusion, if KL implies that the k-th moment of VK[n] is not larger than that of VL[n]. Extending work of Rademacher (Mathematika 58:7791, 2012) and Reichenwallner and Reitzner (Mathematika 62:949958, 2016), it is shown that for nd, the moments of VK[n] are not monotone under set inclusion. As a consequence, the nonmonotonicity of the expected surface area of the convex hull of nd+1 uniform random points in a d-dimensional convex body follows.

Notiz
Lizenz
CC-BY-Lizenz (4.0)Creative Commons Namensnennung 4.0 International Lizenz