Zur Seitenansicht
 

Titelaufnahme

Titel
Making texture descriptors invariant to blur
VerfasserGadermayr, Michael ; Uhl, Andreas
Erschienen in
EURASIP Journal on Image and Video Processing, London, 2016, Jg. 2016, H. 14, S. 1-9
ErschienenSpringer Open, 2016
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)Feature extraction / Invariance / Robustness / Texture recognition
Projekt-/ReportnummerFWF 24366
ISSN1687-5281
URNurn:nbn:at:at-ubs:3-4715 Persistent Identifier (URN)
DOI10.1186/s13640-016-0116-7 
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Making texture descriptors invariant to blur [1.44 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Englisch)

Besides a high distinctiveness, robustness (or invariance) to image degradations is very desirable for texture feature extraction methods in real-world applications. In this paper, focus is on making arbitrary texture descriptors invariant to blur which is often prevalent in real image data. From previous work, we know that most state-of-the-art texture feature extraction methods are unable to cope even with minor blur degradations if the classifier's training stage is based on idealistic data. However, if the training set suffers similarly from the degradations, the obtained accuracies are significantly higher. Exploiting that knowledge, in this approach the level of blur of each image is increased to a certain threshold, based on the estimation of a blur measure. Experiments with synthetically degraded data show that the method is able to generate a high degree of blur invariance without loosing too much distinctiveness. Finally, we show that our method is not limited to ideal Gaussian blur.

Statistik
Das PDF-Dokument wurde 16 mal heruntergeladen.
Lizenz
CC-BY-Lizenz (4.0)Creative Commons Namensnennung 4.0 International Lizenz